INSTITUTE OF COMMUNICATION, INFORMATION AND PERCEPTION TECHNOLOGIES

Scuola Superiore Sant'Anna

IIT Hyderabad

Indian Institute of Technology Hyderabad

Impact of RAN Virtualization on Fronthaul Latency Budget: An Experimental Evaluation

F. Giannone^{1,} H. Gupta², K. Kondepu¹, D. Manicone¹, A. Franklin², P. Castoldi¹, <u>L. Valcarenghi¹</u>

¹Scuola Superiore Sant'Anna, Pisa, Italy ²Indian Institute of Technology Hyderabad, India

WS-21: International Workshop on 5G Test-Beds & Trials – Learnings from implementing 5G (5G-Testbed 2017) Globecom 2017, 4-8 December 2017 – Singapore, Singapore

Summary

- Virtualized New Radio Access Network (RAN)
- Virtual Network Function (VNF) performance evaluation
- Implementation of EPC and RAN functions in ARNO-5G testbed
- Experimental Results
- Conclusions

Virtualized New RAN

gNB Functional Splits (3GPP TR 38.801)

INSTITUTE of COMMUNICATION, INFORMATION AND PERCEPTION TECHNOLOGIES Scuola Superiore Sant'Anna IIT H

© 2017 Scuola Superiore Sant'Anna

Fronthaul requirements (TR 38.801)

	Opt.	Opt.	Opt.	Opt.	Opt.	Opt.	Opt. 7-3	Opt.	Opt.	Opt.
	1	2	3-2	3-1	5	6	(only for DL)	7-2	7-1	8
Transport NW latency requirement		Loose			Not yet clarified	Tight				
	N/A	Lowest			in betweer	higher of	n the right)	6		Highest
Transport NW Peak BW requirement	No UP req.	IP baseband bits Quantized					d IQ (f)	Quant. IQ (t)		
, equilation of the second sec	-	Scales with MIMO layers							Scal anter	es with na ports

IIT Hyderabad

Indian Institute of Technology Hyderabad

Source: LTE for UMTS: Evolution to LTE-Advanced, 2nd Edition, Harri Holma, Antti Toskala ISBN: 978-0-470-66000-3

© 2017 Scuola Superiore Sant'Anna

Study objective

1. Are the extra levels of abstraction impacting the fronthaul latency constraints?

2. Does the jitter impact the fronthaul link performance?

Functional element placement in the ARNO-5G testbed

arnotestbed.santannapisa.it

Scuola Superiore

IIT Hyderabad

Indian Institute of Technology Hyderabad

Sant'Anna

Devices Name	Devices Type	Processor Type	OS
PC 1	mini-pc (Up-board First Generation)	Intel Atom x5-Z8350 Quad Core Processor	Ubuntu 14.04 (4.7 kernel)
PC 2	Dell T410 PowerEdge desktop servers	Intel Xeon E5620	Ubuntu 14.04 (3.19 low-latency kernel)
PC 4	Mini-ITX	Intel I7 7700 Quad Core (@ 4.0GHz)	Ubuntu 14.04 (3.19 low-latency kernel)
PC 5	mini-pc (Up-board First Generation)	Intel Atom x5-Z8350 Quad Core Processor	Ubuntu 14.04 (4.7 kernel)
PC 6	mini-pc (Up-board First Generation)	Intel Atom x5-Z8350 Quad Core Processor	Ubuntu 14.04 (4.7 kernel)
PC 7	Desktop Computer	land i7 4790 (jj. 3.60 GHz)	Ubuntu 14.04 (3.19 low-latency kernel)
INSTITUTE			

7

Mobile Network Software – OpenAirInterface

For the Core and RAN implementation the OpenAir interface software is used.

Core Implementation	RAN Implementation
openair-cn Implements the EPC 3GPP specs Contains the implemention of: ✓ Home Subscriver Server (HSS) ✓ Mobile Management Entity (MME) ✓ Serving Gateway (S-GW)	 openairinterface5g Implementation of Rel 10 LTE of: ✓ Evolved NodeB (eNB); ✓ User Equipment (UE). Implemented functional splits options: ✓ IF4p5 → Option 7-1 (intra-PHY split)
✓ PDN Gateway (PDN-GW)	✓ IF5 \rightarrow Option 8 (PHY-RF split)

	Option 7-1						
	Uplink Direction	Downlink Direction					
DU	FFT, CP removal and PRACH filtering	IFFT, CP addition and PRACH filtering					
CU	Rest of PHY functions and the higher layers	Rest of PHY functions and the higher layers					
	and the higher layers	and the higher layers					

Sant'Anna

Indian Institute of Technology Hyderabad

Performance Evaluation Parameters

 Allowable latency budget: allowable one-way fronthaul latency between DU and CU

• Allowable jitter budget: allowable one-way fronthaul jitter between DU and CU

Emulations of Latency and Jitter on the fronthaul

- The linux utility traffic control "tc-netem" is used
- A delay d0 is applied to the DU Ethernet interface towards the CU.
- A delay d1 is applied to the CU Ethernet interface towards the DU.
- Evaluation of the frontahul latency budget:
 - \checkmark d0 and d1 are increased with steps of 10 µs until DU, CU and UE disconect.
- Evalution of the fronthaul jitter budget:
 - ✓ A jitter following a normal distribution is added to the latency values d0 and d1 with standard deviation increased of

Source: https://www.excentis.com/blog/use-linuxtraffic-control-impairment-node-testenvironment-part-2

Scuola Superiore

Sant'Anna

Considered scenarios

- Scenario 1:
 - All functional elements deployed in bare metal

• Scenario 2:

•

Two DUs in bare metal connected to two instances of CU running in the same bare metal

- Scenario 3:
 - CU and EPC virtualized through VirtualBox
 - DU in bare metal
 - All functional elements based on juju charms and managed through Juju.

Allowable Latency Budget

- Allowable latency budget always below 250 µs
- Allowable latency budget decreases if the signal bandwidth and if the number of DUs connected to the same CU increases due to heavier processing
- Allowable latency budget is much lower if mobile network functions are virtualized

Impact of Allowable Jitter Budget on Allowable Latency Budget

- The Jitter is applied to a latency value close to the fronthaul allowable latency budget
- The fixed latency value is choosen according to the scenario

• Jitter negatively impacts latency budget

Allowable Jitter Budget

- The Jitter is applied to a latency value far to the fronthaul allowable latency budget
- The fixed latency value is choosen according to the scenario

• Jitter negatively impacts fronthaul because there are periods in which not enough samples (i.e., modulation symbols) can be delivered to the PHY layer

Conclusions

- Experimental evaluation of the impact of virtualizing eNB functions on the fronthaul latency and jitter budget
- Functional split Option 7-1 (i.e. intra-PHY) and Option 8 (PHY-RF) are applied
- No virtualization
- Virtualization based on Virtualbox
- The fronthaul latency bandwidth reduction depends on the considered signal bandwidth (i.e. 5 MHz, 10 MHz) and on the number of functions running in the same device
- Virtualization decreases the allowable latency budget
- A jitter of at most 40 us can be tolerated

thank you!

email: luca.valcarenghi@santannapisa.it

This work has been partially funded by the EU H2020 5G-Transformer Project (grant no. 761536)

Backup Slides

gNB Virtualization

18

- ETSI (ETSI GS NFV-PER 001 V1.1.1 (2014-06)) descriptors:
 - Virtual Network Function (VNF)
 - Virtual Machine (VM)
 - Compute Host
- What virtualization implies:
 - applications running in the guest host have "to cross" several layers of abstraction.
 - Extra levels of abstraction reduce workload performance.
- Different virtualization types:
 - ✓ Hypervisor-based virtualizations:
 - allow to fully emulate a CPU architecture and OS;
 - Container-based virtualizations:
 - ✓ utilizes kernel features to create an isolated environment of the process using the host hardware.

Indian Institute of Technology Hyderabad

Scuola Superiore

Sant'Anna

Fronthaul requirements (TR 38.801)

	Opt.	Opt.	Opt.	Opt.	Opt.	Opt.	Opt. 7-3	Opt.	Opt.	Opt.
	1	2	3-2	3-1	5	0	for DL)	7-2	/-1	0
Transport NW latency requirement		Loose			Not yet clarified	Tight				
	N/A	Lowest in between (higher on the right)							Highest	
Transport NW Peak BW requirement	No UP req.	No UP baseband bits req.					Quantized IQ (f) Qua IQ		Quant. IQ (t)	
1	_	Scales with MIMO layers							Scal anter	es with na ports

ASSUMPTIONS

		-	Items	Assumption	Applicability		
Protocol Split option ¹	Required bandwidth	Max. allowed one	Channel Bandwidth	[100MHz(DL/UL)]	All options		
		way latency [ms]	Modulation	[256QAM(DL/UL)]			
Option 7c	[DL:10.1~22.2Gb/s]	[250us]			-		
			Number of MIMO layer	[8(DL/UL)]			
	$[UL: 53.8 \sim 86.1 Gb/s]$		IQ bitwidth	[2*(7~16)bit(DL),	Option 7a		
Option 8	[DL:157.3Gb/s]	[250us]		2*(10~16)bit(UL)]	Option 7b		
	[UL: 157.3Gb/s]				Option 7c		
		↑		[2*16bit(DL/UL)]	Option 8		
	To be reviewed	due to 4ms	Number of antenna port	[32(DL/UL)]	Option 7b		
		HARQ process			Option 7c(UL)		
					Option 8		
PDSCH	Retr	ansmission	Source: LTE for UMT	S: Evolution to LTE-A	Advanced, 2nd Editior		
		PDSCH	Harri Holma, Antti Toskala				
3 ms UE proces	ssing time 3 ms eNodeB	processing time	ISBN: 978-0-470-66000-3 © 2017 Scuola Superiore Sant'Anna				
1 ms	1 ms		19		•		

Virtualized EPC and CU Network configuration

• HSS-VM:

✓ 1 Virtual Interfaces in host-only networking (s6a interface);

- MME-VM:
 - ✓ 1 Virtual Interfaces in host-only networking mode (S6a interface);
 - ✓ 1 Virtual Interfaces in bridge networking mode (S1-C interface);
- SPGW-VM:
 - ✓ 1 Virtual Interfaces in host-only networking mode (S11 interface);
 - ✓ 1 Virtual Interfaces in bridge networking mode (S1-U interface)
- CU-VM:
 - ✓ 1 Virtual Interfaces in bridge networking mode (S1-U and S1-C interfaces);
 - ✓ 1 Virtual Interfaces in bridge networking mode (fronthaul link).