
How much is Fronthaul Latency Budget Impacted
by RAN Virtualisation ?

H. Gupta?, D. Manicone•, F. Giannone•, K. Kondepu•, A. Franklin?, P. Castoldi•, L. Valcarenghi•
•Scuola Superiore Sant’Anna, Pisa, Italy

?Indian Institute of Technology Hyderabad, India
Email:cs16mtech01001@iith.ac.in

Abstract—In the New Radio Access Network architecture (New
RAN), currently envisioned by 3GPP, the evolved NodeB (eNB)
functions can be split between a Distributed Unit (DU) and
Central Unit (CU). Furthermore, as per the Virtual RAN (VRAN)
approach, such functions can be virtualised (e.g., in simple terms,
deployed in virtual machines). In such scenario, the fronthaul
network connecting DU and CU must fulfill different latency
and capacity requirements based on the selected functional split.

This study experimentally evaluates in a federated testbed
how the fronthaul latency budget (i.e., the latency requirement
of the fronthaul network connecting DU and CU), specified by
Standard Developing Organisations (SDO) (3GPP in this specific
case), is impacted by virtualising some of the RAN functions.
In particular, Option 7-1 (i.e., intra-PHY split) and different
virtualisation methods are considered for the CU. Furthermore,
it evaluates how jitter (i.e., delay variation) impacts the DU-CU
communication.

The obtained results show that light virtualisation methods
(e.g., Docker) impact less the fronthaul latency budget than heavy
virtualisation methods (e.g., VirtualBox). In addition, a maximum
jitter of about 40 µs can be tolerated in the fronthaul.

Index Terms—5G, functional split, virtualisation, latency, jitter

I. INTRODUCTION

5G networks are expected to be massively deployed and
offer an unprecedented capacity to address the demanding
requirements of throughput, latency, and scalability of current
and future 5G applications, such as eMBB (enhanced Mobile
Broadband), mMTC (massive Machine Type Communica-
tions) and URLLC (Ultra-Reliable and Low Latency Commu-
nications) [1], [2]. A New Radio Access Network (New RAN)
architecture supporting the, so called, New Radio (NR) access
technology has been proposed to increase performance with
limited deployment costs. In the New RAN the evolved NodeB
(eNB) functions are split into two new network entities [3]: the
Central Unit (CU) deployed in centralised locations and the
Distributed Unit (DU) deployed near the antenna. The function
distribution is based on the chosen functional split.

The choice of supporting different functional splits is moti-
vated by the limitations shown by the Common Public Radio
Interface (CPRI), so far used to connect the Radio Equipment
Control (REC) (i.e., CU) and the Radio Equipment (i.e.,
DU) [4]. CPRI is based on carrying time domain baseband
IQ samples between REC and RE. Thus, CPRI needs a
high capacity fronthaul, low latency, low delay variation and
fine synchronisation. Guaranteeing such requirements in the
fronthaul is particularly challenging and expensive [5]–[9].

New upper layer functional splits have been proposed by
3GPP in TR 38.801 [3] and a Next Generation Fronthaul
Interface (NGFI) is under definition [10]. As reported in
3GPP TR 38.801 [3], different splits demand different re-
quirements in terms of latency and capacity to the fronthaul
network connecting DU and CU. Moreover, recent approaches
are proposing the virtualisation of the New RAN functions
(e.g., the CU) paving the way to the so-called Virtual RAN
(VRAN) [11]. However the impact of such virtualisation on
the fronthaul latency budget (i.e., the latency requirement of
the fronthaul network connecting DU and CU) is yet to be
fully evaluated.

One of the main component of virtualisation is the hypervi-
sor [12]. Hypervisors monitor virtual machines and allocate the
physical resources of the host operating system. Different hy-
pervisors characterised by different virtualisation ”depth”, may
have different performance in virtualising the same scenario.
Therefore, in VRAN, the latency introduced by the hypervisor
operations could be crucial for the fronthaul latency budget.

This paper evaluates experimentally the fronthaul latency
and jitter (i.e., delay variation) budgets for different radio
channel bandwidths, when different virtualisation methods
are utilized. Option 7-1 (i.e., intra-PHY) functional split is
considered and EPC and CU only are virtualised by using
VirtualBox, Kernel-based Virtual Machine (KVM) and Docker.
The experimental evaluation is performed in the 5G segment
of the Advanced Research on Networking testbed (ARNO-5G).
ARNO-5G allows to emulate the behaviour of a 5G network
and run performance tests to evaluate several functional split
requirements. ARNO-5G is federated in the Fed4FIRE feder-
ation.

The obtained results show that light virtualisation methods
(e.g., Docker) impact less the fronthaul latency budget than
heavy virtualisation methods (e.g., VirtualBox). In addition,
a maximum jitter of about 40 µs can be tolerated in the
fronthaul.

II. THE ARNO-5G TESTBED

Fig. 1 shows a block diagram of the ARNO-5G testbed. This
section describes the physical characteristics of the devices
composing the ARNO-5G testbed, the federation of the testbed
and the utilized LTE emulation platform.



TABLE I
ARNO-5G TESTBED

Devices Name Devices Type Processor Type OS
PC 1 mini-pc (Up-board First Generation) Intel Atom x5-Z8350 Quad Core Processor Ubuntu 14.04 (4.7 kernel)
PC 2 Dell T410 PowerEdge desktop servers Intel Xeon E5620 Ubuntu 14.04 (3.19 low-latency kernel)
PC 3 Dell T410 PowerEdge desktop servers Intel Xeon E5620 Ubuntu 14.04 (3.19 low-latency kernel)
PC 4 Mini-ITX Intel I7 7700 Quad Core (@ 4.0GHz) Ubuntu 14.04 (3.19 low-latency kernel)
PC 5 mini-pc (Up-board First Generation) Intel Atom x5-Z8350 Quad Core Processor Ubuntu 14.04 (4.7 kernel)
PC 6 mini-pc (Up-board First Generation) Intel Atom x5-Z8350 Quad Core Processor Ubuntu 14.04 (4.7 kernel)
PC 7 Desktop Computer Intel I7 7700 Quad Core (@ 4.0GHz) Ubuntu 14.04 (3.19 low-latency kernel)

Fig. 1. The ARNO 5G testbed

A. Overview of the ARNO-5G Testbed

Table I summarizes the principal characteristics of the
devices composing the ARNO-5G testbed. The kernel hosted
in PC 1 is directly pre-compiled by OpenAirInterface (OAI)
platform for including the GPRS Tunnelling Protocol (GTP)
kernel module. PC 4 is connected Universal Software Radio
Peripherals (USRPs) through an USB 3.0 HUB in order to
easily attach/detach each USRPs. The Ettus B210 and the
LimeSDR are fully integrated, single-board, USRP platforms
and they act as radio front-end performing Digital to Analog
and Analog to Digital Conversion (DAC/ADC), Digital Up
and Down Conversion (DUC/DAC), low pass filtering, and
amplification.

The Huawei E3372 LTE dongles are utilized as User Equip-
ments (UEs). They support LTE category 4 and frequency-
division duplexing (FDD) communication in the following
bands: 900 MHz, 1800 MHz, 2100 MHz and 2600 MHz. They
support a maximum rate of 150 Mb/s in downlink and 50 Mb/s
uplink with a signal bandwidth of 20 MHz. The dongles are
connected to the Ettus B210 USRPs through SMA cables with
40 dB of attenuation. Note that one of the LimeSDR is also
used to act as OAI UE.

All the ARNO-5G PCs, have a management plane interface
and also a data plane interface. The management and data
planes belong to two different networks. The former one (i.e.,
10.30.x.x) belongs to the lab LAN to assure the continuous
reachability of the machines. The latter one is handled by a
Cisco Catalyst 2960G switch (indicated as SWITCH in Fig. 1)
and it is used exclusively as ARNO-5G testbed data plane for
the communication between the LTE network entities. All the

PCs are connected to the management plane through 100 Mb/s
Ethernet links while they are all connected to the SWITCH by
a 1 Gigabit Ethernet link. The SWITCH is configured to have
different subnets for the backhaul link and for the fronthaul
link. Therefore the EPC and the CU interfaces belonging to
the backhaul link are configured in the 10.10.20.x subnet while
the fronthaul link and the interfaces of the CU and DU are
configured in the 10.10.30.x subnet.

The utilised mobile network software is the OpenAirIn-
terface (OAI) by Eurecom [13]. The core network utilizes
openair-cn, an implementation of the Evolved Packet Core
(EPC) network [14]. It implements the EPC 3GPP speci-
fications, that means it contains the implementation of the
following network elements: the Serving Gateway (S-GW),
the PDN Gateway (PDN GW), the Mobile Management Entity
(MME) and the Home Subscriber Server (HSS). For the RAN,
openairinterface5g provides a standard-compliant implemen-
tation of Release 10 LTE and later for the evolved NodeB
(eNB) and User Equipment (UE) [15]. It also provides an
implementation of some eNB functional splits and therefore
a possible deployment of Cloud/Virtualised RAN (C/V-RAN).
The functional splits implemented by the OAI platform are the
IF5 and IF4.5 also known as Option 8 and Option 7-1 in the
3GPP terminology [3].

Option 8 (i.e., PHY-RF split) separates the RF and the PHY
layer. All the RF functions reside in the DU and the layers
from the PHY layer to Radio Resource Control layer (RRC)
reside in the CU.

In Option 7-1 (i.e., intra-PHY) split in the uplink direction,
Fast Fourier Transform (FFT), Cyclic Prefix (CP) removal and
possibly Physical Random Access Channel (PRACH) filtering
functions reside in the DU and the rest of PHY functions reside
in the CU. In the downlink direction, Inverse Fast Fourier
Transform (IFFT) and CP addition functions reside in the DU,
the rest of PHY functions reside in the CU. In other word,
Option 7-1 functional split is made before/after the resource
mapping/demapping respectively.

B. Federation of the ARNO-5G Testbed
ARNO testbed is federated in the Fed4FIRE federation

and it accepts users from only one trusted central authority
(iMinds) identity provider. Here, experimenters can configure
experiments interconnecting resources from multiple testbeds
at the same time, reserve and access them via iMinds tools
such as jFed [16].



Once successfully logged in, experimenters can set up their
experiments by choosing which types of resources and from
which testbeds, configure those resources (operative system,
software to be installed, network configurations, measurement
options, etc.), launch the experiments and access the resources.

Through jFed tool, an experimenter can select the ARNO
testbed, namely “Sant'Anna Pisa testbed” and provide their
slice name. This process creates a Docker container in ARNO
testbed. Finally experimenters can enter each OAI component
of ARNO testbed through ssh based on the specific container.
More details about how to reserve the components of ARNO
testbed can be found in [17].

III. PERFORMANCE EVALUATION PARAMETERS AND
EVALUATION SCENARIOS

This paper evaluates experimentally the latency and jitter
budgets that Option 7-1 functional split can support in the
fronthaul. The fronthaul latency budget is defined as the
one-way latency requirement of the sole fronthaul network
interconnecting the DU and the CU. The fronthaul jitter
budget is defined as the maximum supported jitter (i.e., latency
variation) by the fronthaul. For Option 7-1 split the one-way
fronthaul latency constraint specified by 3GPP is 250 µs [3],
mainly due to the 4ms limit of the Hybrid ARQ (HARQ) [18]
protocol, while no constraint is specified for the jitter. The
experimental evaluations aforementioned are performed for
different virtualisation softwares and for signal bandwidths
equal to 5 MHz and 10 MHz, corresponding to 25 and 50
Physical Resource Blocks (PRBs).

The latency and the jitter experienced along the fronthaul
link are emulated by means of the linux utility traffic control
tc. The tc utility is based on a token bucket filter and it is
capable of increasing the delay and jitter experienced on a
link by a packet by storing it in the output interface for a
specified amount of time before its transmission on the link.
A delay d0 is applied to the Ethernet interface of the machine
in which the DU is deployed and a delay d1 is applied to
the Ethernet interface of the machine in which the CU is
deployed. In this way a one-way latency is inserted in the
fronthaul link. For evaluating the fronthaul latency budget, d0
and d1 are increased with steps of 10 µs until DU, CU, and UE
disconnect. For evaluating the fronthaul jitter budget, instead,
the jitter follows a normal distribution and it is added to the
latency values d0 and d1 with steps of 10 µs until DU, CU,
and UE disconnect. Two different scenarios are considered: in
the first one the latency is set close to the fronthaul latency
budget and the jitter is varied to understand if the jitter could
cause a reduction of the fronthual latency budget. In the second
one the latency is set quite below the fronthaul latency budget
and the jitter is varied to understand if the jitter could be an
additional constraint for the fronthaul.

The considered experimental evaluation scenario is shown
in Fig. 2. Regardless of the considered hypervisor, in such
scenario, the EPC and CU are virtualised while the DU is
deployed in a physical machine. In particular, the EPC is
deployed in PC 1. The Mobile Management Entity (MME) is

Fig. 2. Scenario considered for the experimental evaluation

deployed in a VM called MME-VM and the Home Subscriber
Server (HSS) is deployed in a second VM called HSS-VM.
The Serving Gateway (S-GW) and the PDN Gateway (PDN-
GW) are deployed in a third VM called SPGW-VM. The CU
is hosted in PC 2 and is deployed in another VM called CU-
VM. The DU runs always in PC 4 in a physical machine and
the UEs, connected to the RAN through SMA cables with 40
dB of attenuation, are deployed by means of a Huawei E3372
dongle connected to PC 5.

The other experimental parameters, independent of the
utilized virtualisation method, are shown in Table II.

TABLE II
EXPERIMENTAL PARAMETERS

Parameter Value
Experiment Duration 100000 TTIs

Frame Duration 10 ms
Duplexing Mode FDD

PHY Layer Abstraction NO
Number of CUs 1
Number of DUs 1
Number of UEs 1

Carrier Bandwidth 5MHz, 10 MHZ

Different virtualisation methods are considered: VirtualBox,
Kernel-based Virtual Machine (KVM) and Docker.

Using VirtualBox, MME-VM, HSS-VM and SPGW-VM host
Ubuntu 16.04 with 4.8 generic kernel featuring a one core
virtual CPU and 1 GB of RAM. Instead CU-VM hosts Ubuntu
14.04 with 3.19 low-latency kernel featuring a 8 core virtual
CPU and 16 GB of RAM.

The utilized virtual Network Interface Controller (NIC)
modes are bridged and host-only networking. Here, the bridge
networking mode allows a VM to intercept data from/to
the physical network effectively by creating a new network
interface in software. Therefore we bridge a virtual ethernet
interface in bridge networking mode in both MME-VM and
SPGW-VM to the physical ethernet interface in PC 1, referred
as br0 in Fig. 2. Whereas in CU-VM, two virtual interfaces
are bridged in bridge networking mode with corresponding
physical ethernet interfaces in PC 2 (referred as br0 and br1
in Fig. 2). This because the first CU-VM virtual interface
has to connect to the MME-VM for the LTE control plane
communications (S1-C interface) and with the SPGW-VM for
the LTE data plane communications (S1-U interface). Instead,
the second CU-VM virtual interface is used for the fronthaul
communication with the DU.



The host-only networking mode, is a networking mode that
can be thought of as a hybrid bridged networking: the virtual
machines can communicate to each other and the host as
if they were connected through a physical Ethernet switch
but they cannot communicate to the external (world) host
since there is not a networking interface. Therefore, such
networking mode is used for the internal communications
between the entities composing the EPC: a virtual interface,
different from the above mentioned, is set on MME-VM, HSS-
VM and SPGW-VM allowing the communications between the
MME-VM and the HSS-VM (S6a interface) and between the
MME-VM and SPGW-VM (S11 interface) through the host-
only adapter vboxnet0.

The NICs used for the virtualised EPC are:
• Bridge adapter enp0s3 to physical interface eno2 with

subnet 10.30.x.x (used for the management plane);
• Host-only adapter enp0s8 to vboxnet0 interface, with

subnet 192.168.x.x (used for internal EPC service con-
figuration and relationship);

The NICs used for the virtualised CU are:
• Bridge adapter enp0s3 to physical interface eth5 with

subnet 10.30.x.x (used to set S1-C and S1-U interface
between CU and MME and between the CU and SPGW
respectively);

• Bridge adapter enp0s9, to Physical interface eth1 with
subnet 10.10.x.x (used to set the fronthaul between DU
and CU).

The second virtualisation software used for the deployment
of the scenario shown in Fig. 2 is Kernel-based Virtual
Machine (KVM). KVM, an open source software, is a full
virtualisation solution for Linux on x86 hardware containing
virtualisation extensions (Intel VT or AMD-V). It consists of
a loadable kernel module that provides the core virtualisation
infrastructure and a processor specific module. Using KVM, it
is possible to run multiple virtual machines running unmod-
ified Linux or Windows images. Each virtual machine has
private virtualised hardware: a network card, disk, graphics
adapter, etc. For our purpose we characterised the MME-VM,
HSS-VM and SPGW-CU with Ubuntu 16.04 with 4.8 generic
kernel featuring a one core virtual CPU and 1 GB of RAM.
Instead CU-VM hosts Ubuntu 14.04 with 3.19 low-latency
kernel featuring a 8 core virtual CPU and 16 GB of RAM.
In PC 1 we bridge the management physical interface with a
first interface of each VMs in passthrough source mode and
the physical data plane interface with a second interface of
each VMs in bridge source mode. In the passthrough source
mode option, a virtual function of a Single-Root Input/Output
Virtualisation (SRIOV) capable Network Interface Controller
(NIC) is attached directly to a target VM without losing
the migration capability. Therefore all the packets are sent
directly to the network devices. In the bridge source mode
option, packets whose destination is on the same host physical
machine where they are originated from are directly delivered
to the target device. Regarding the CU, because no internal
host communication is needed, we set three different virtual

interfaces in passthrough source mode each connected to
three different physical interfaces. Thus, the NICs used for
virtualised EPC are:

• passthrough adapter enp0s3 to physical interface eno2
with subnet 10.30.x.x (used for the management plane);

• bridge adapter enp0s8 to vboxnet0 interface with subnet
192.168.x.x (used for internal EPC service configuration
and relationship);

The NICs used for the virtualised CU are:
• passthrough adapter enp0s3 to physical interface eth5

with subnet 10.30.x.x (used to set S1-C and S1-U in-
terface between CU and MME and between the CU and
SPGW respectively).

• passthrough adapter enp0s9 to physical interface eth1
with subnet 10.10.x.x (used to set the fronthaul between
DU and CU).

Finally, Docker has also been used for the deployment of
the scenario shown in Fig. 2. Docker is an open platform
for developers and it is a mechanism that helps in isolating
the dependencies per each application by packing them into
containers. Containers are more scalable to deploy than virtual
machines. Virtual machines have a full OS with its memory
management installed with the associated overhead of virtual
device drivers. Containers are therefore smaller than Virtual
Machines and enable faster start up with better performance,
less isolation and greater compatibility which is possible due
to sharing of the hosts kernel. Docker containers can share
a single kernel and share application libraries. Containers
present a lower system overhead than Virtual Machines and
the performance of the application inside a container is almost
the same as compared to the same application running on a
Physical Machine but better as compared to Virtual Machine.

There are different types of network modes available to
connect Docker container with the host machine or to an
external host. We connect our container through host network
which uses the same protocol stack as the host device is using.
A considerable advantage of using Docker containers is that
we can bypass the overhead of bridge adapter used in previous
approaches. Because OAI set many system variable values at
run time, we run Docker container with privileged mode so
that the container has got write permissions to set system vari-
ables. The following interfaces ((i.e., host’s network interfaces)
are set up in the utilized Docker containers:

• Physical interface eth5 with subnet 10.30.x.x (to set S1-C
and S1-U interface between CU and MME and between
the CU and SPGW respectively).

• Physical interface eth1 with subnet 10.10.x.x (used to set
the fronthaul between DU and CU).

IV. EXPERIMENTAL RESULTS

This section presents the experimental results obtained in
the considered scenarios for both fronthaul allowable latency
and jitter budgets.

Fig. 3 shows the fronthaul allowable latency budget for the
considered virtualisation methods with different signal band-
width values (i.e., 5 MHz and 10 MHz). Using VirtualBox,



the fronthaul allowable latency budget is 40µs for 5 MHz
signal bandwidth. For 10 MHz signal bandwidth, CU and
DU never communicate. This is due to the large number of
samples generated at DU which cannot be handled with current
configuration of the considered PC 2 in which CU-VM is
deployed.

If KVM is used, the fronthaul allowable latency budget is
190 µs for 5 MHz bandwidth and 140 µs for 10 MHz band-
width, respectively. By using Docker, the fronthaul allowable
latency budget is 35 µs in the case of 5 MHz bandwidth and
165 µs for the MHz bandwidth. Thus, if VirtualBox is used, the
fronthaul allowable latency budget is very low when compared
to when the CU is deployed in other virtualisation methods. By
using KVM and Docker the allowable latency budget is close
to the 3GPP constraint specified in TR 38.801. This is mainly
due to how the packets are forwarded by the host network
interface to the virtualized one and how they are managed.
Regardless of the utilized virtualisation methods, the fronthaul
latency budget is also a function of the signal bandwidth. Such
dependence is due to the heavier processing required by the
higher number of PRBs.

Fig. 3. Fronthaul allowable latency budget

While fronthaul latency requirements for different func-
tional splits are specified by the 3GPPP [3], fronthaul jitter
budget has not been fully evaluated yet.

Fig. 4 shows the obtained fronthaul allowable jitter budget
results using the three virtualisation methods as above when
the jitter is applied to a latency value close to the fronthaul
allowable latency budget. With VirtualBox, the experiments are
carried out by setting a fixed latency on the fronthaul link equal
to 20 µs for 5 MHz signal bandwidth. The obtained fronthaul
allowable jitter budget is 25 µs and no communication was
observed in case of 10 MHz signal bandwidth. In the KVM
case, the experiments are carried out by setting a fixed latency
on the fronthaul link equal to 170 µs for a 5 MHz signal
bandwidth and equal to 120 µs for a 10 MHz signal bandwidth.
The fronthaul allowable jitter budget is equal to 20 µs for
both signal bandwidths as shown in Fig. 4. With the Docker,
the experiments are carried out by setting a fixed latency
on the fronthaul link equal to 220 µs for 5 MHz signal
bandwidth and equal to 150 µs in case of 10 MHz bandwidth.
The obtained fronthaul allowable jitter budget is 25 µs in

the first case and 35 µs in the second one. Thus, for all
the considered virtualisation methods the latency budget is
negligibly impacted by the jitter.

Fig. 4. Fronthaul allowable jitter budget with latency close to the allowable
latency budget

To observe the impact of jitter on the fronthaul link, the
latency value is set far from the budgets reported in Fig. 3.
The obtained results are shown in Fig. 5 for all the consid-
ered virtualisation methods. When the CU is virtualised with
VirtualBox, the experiments are conducted by setting a fixed
latency on the fronthaul link equal to 20 µs for 5 MHz signal
bandwidth. The obtained fronthaul allowable jitter budget is
25 µs and no communication was observed in case of 10
MHz signal bandwidth. Whereas, in KVM case, the latency
value is fixed to 100 µs for 5 MHz and equal to 80 µs for
10 MHz signal bandwidth. The obtained fronthaul allowable
jitter budget is 25 µs for the 5 MHz signal bandwidth and 30
µs for the 10 MHz case. With the Docker, the experiments
are carried out by setting a fixed latency on the fronthaul link
equal to 150 µs for 5 MHz signal bandwidth and equal to
100 µs in case of 10 MHz bandwidth. The obtained fronthaul
allowable jitter budget is 40 µs and 35 µs for 5 MHz and 10
MHz, respectively. Thus the maximum allowable jitter budget
is achieved by utilizing the Docker technology and it is about
40 µs.

Fig. 5. Fronthaul allowable jitter budget with a fixed latency far from the
allowable latency budget



V. CONCLUSIONS

This paper presented the experimental evaluation of the
impact of virtualizing eNB functions on the fronthaul latency
and jitter budget when different virtualisation methods are
utilized. The experimental evaluation was performed in a
testbed utilizing OpenAirInterface as mobile network software,
desktop computers, USRPs, and LTE dongles.

Results showed that lighter virtualisation methods (e.g.,
Docker) are impacting the fronthaul latency budget for Option
7-1 (i.e., intra-PHY) split less than heavier virtualisation
methods (e.g., VirtualBox). However, in all the cases, the
fronthaul latency budget reduction depends on the considered
signal bandwidth. The higher the bandwidth the higher the
computations required the higher the fronthaul latency budget
reduction. Furthermore, the performed experimental evaluation
showed that a jitter of at most 40 µs can be tolerated.

ACKNOWLEDGMENT

This work has been partially funded by the H2020-ICT-
2014-1 Wishful project (grant no. 645274).

REFERENCES

[1] Ericsson mobility report, June 2015, last accessed Jan. 22, 2016.
[2] 5G radio access, June 2015, last accessed Jan. 22, 2016. http://www.

ericsson.com/res/docs/whitepapers/wp-5g.pdf
[3] 3rd Generation Partnership Project; Technical Specification Group Radio

Access Network, Study on new radio access technology; radio access
architecture and interfaces, 3GPP TR 38.801 V2.0.0 (2017-03).

[4] Common Public Radio Interface (CPRI) Specification V7.0, Tech. Rep.,
2015 (accessed on Jun. 11, 2017). http://www.cpri.info/downloads/

[5] 5G PPP, “View on 5G Architecture,” White Paper, July 2016. [Online]
Available: https://5g-ppp.eu/white-papers/ (accessed on Jul. 20, 2017)

[6] D. Chitimalla, K. Kondepu, L. Valcarenghi, M. Tornatore, and B.
Mukherjee, “5G Fronthaul-Latency and Jitter Studies of CPRI Over
Ethernet,” J. Opt. Commun. Netw. 9, 172-182, 2017.

[7] L. Valcarenghi, F. Giannone, D. Manicone, and P. Castoldi, “Virtualized
eNB latency limits,” Proc. of ICTON, 2017.

[8] Small Cell Forum Document 159.07.02, Small cell virtualization func-
tional splits and use cases, Small Cell Forum, January 2016 (accessed
on Jul. 20, 2017)

[9] L. Valcarenghi, K. Kondepu, and P. Castoldi, “Time- Versus Size-Based
CPRI in Ethernet Encapsulation for Next Generation Reconfigurable
Fronthaul,” J. Opt. Commun. Netw. 9, D64-D73, 2017.

[10] Next Generation Fronthaul Interface (1914) Working Group [Online]
Available: http://sites.ieee.org/sagroups-1914/ (accessed on Jul. 20,
2017).

[11] A. Checko, H. Christiansen, H. Yan, Y. Scolari, G. Kardaras, M. Berger,
and L. Dittmann, “Cloud RAN for mobile networks ? A technology
overview,” IEEE Commun. Surv. Tutorials, vol. 17, pp. 405-426, 2015.

[12] A. Blenk, A. Basta, M. Reisslein and W. Kellerer, “Survey on Network
Virtualization Hypervisors for Software Defined Networking,” IEEE
Commun. Surv. Tutorials, vol. 18, no. 1, pp. 655-685, Firstquarter 2016.

[13] http://www.openairinterface.org
[14] https://gitlab.eurecom.fr/oai/openair-cn
[15] https://gitlab.eurecom.fr/oai/openairinterface5g
[16] jFed http://doc.fed4fire.eu/getanaccount.html
[17] ARNO-5G Testbed arnotestbed.santannapisa.it
[18] CMCC, “Transport requirement for CU&DU functional splits options,”

R3-161813 (document for discussion), 3GPP TSG RAN WG3 Meeting
#93, Goteborg, Sweden, 22nd-26th August 2016


